行业资讯 > 最新资讯 > 科研成果

复旦大学徐彦辉教授课题组揭示表观遗传研究新成果

5月11日Nature Communications杂志上发表复旦大学的徐彦辉教授课题组揭示出了USP7通过乙酰化作用介导DNMT1稳定的分子机制的新研究。


DNA甲基化是一种重要的表观遗传修饰,在包括转录调控、染色质结构、基因组印迹和重复DNA元件的沉默等许多生物过程中起重要的作用。在脊椎动物中,DNA甲基化主要发生在胞嘧啶鸟嘌呤二核苷酸(cytosine–guanine dinucleotide,CpG)位点。经DNA甲基转移酶催化胞嘧啶转化为5-甲基胞嘧啶。在许多的人类癌症中经常可以见到异常的DNA甲基化,其促进了肿瘤的发生。


哺乳动物的DNA甲基化模式是在胚胎发育过程中通过DNA从头甲基化转移酶DNMT3a和DNMT3b建立起来,并在复制过程中通过DNA甲基转移酶DNMT1忠实地传递给子细胞。UHRF1可结合半甲基化的DNA和H3K9me2/3,以及招募DNMT1,有效定位到异染色质上,并在异染色质的形成与维持中起重要作用。研究证实DNMT1在多种癌症类型中高水平表达,DNMT1过表达在肿瘤的发生中扮演着重要的角色。


DNMT1的表达在转录水平上受到PI3/PKB、Rb/E2F和p53/SP1等多条信号通路的调控,甲基化、磷酸化、乙酰化和泛素化等翻译后修饰则进一步地调控了DNMT1的稳定性。以往的一些研究还表明,SET7主要在S期晚期导致了DNMT1的K142位残基甲基化,这种甲基化以一种细胞周期依赖性方式促进了蛋白酶体降解。Set7/9使得小鼠Dnmt1的K1096位残基甲基化可以降低Dnmt1的稳定性,而组蛋白去甲基酶LSD1介导的K1096位去甲基化则是小鼠胚胎发生过程中维持DNA甲基化及原肠胚形成的必要条件。HSP90可与DNMT1互作稳定DNMT1,而HSP90乙酰化则可破坏这种互作,促使DNMT1降解。


USP7可使几个肿瘤抑制因子(p53、PTEN、FOXO和claspin),以及几种E3连接酶(MDM2、Mule和病毒蛋白ICP0)去泛素化,由此调控了与肿瘤发生相关的一些重要信号通路。有趣的是有越来越多的证据表明,USP7还导致了一些染色质相关蛋白,包括组蛋白H2B、UHRF1和Tip60去泛素化。因此,USP7参与了肿瘤发生、DNA修复、病毒侵入和表观遗传调控。与上述功能相一致,USP7在许多的癌细胞,包括前列腺癌、结肠癌、膀胱癌、肝癌和肺癌中均表达上调,被视为是一个潜在的药物靶点。近期的一些研究表明USP7结合DNMT1并通过乙酰化和泛素化作用调控了DNMT1稳定性。但对于USP7介导DNMT1稳定性的分子机制目前尚不清楚。


为此,在新文章中研究人员确定了人类DNMT1与USP7的晶体结构,分辨率达到2.9埃。结构和生物化学分析揭示,它们之间的互作主要是通过DNMT1的KG连接体(linker)和USP7从前未发现的一个酸性口袋所介导,这一靠近USP7羧基端(C-terminus)的酸性口袋充当了底物结合位点。这些酸性残基突变可以破坏DNMT1与USP7之间的互作,促进DNMT1转换。KG连接体赖氨酸残基乙酰化可破坏DNMT1–USP7的互作,促进DNMT1蛋白酶体降解。采用HDAC抑制剂处理可导致乙酰化DNMT1上升及总体DNMT1蛋白下降。研究人员在一些分化神经细胞和胰腺癌细胞中都观察到了这种负相关关系。


新研究揭示出,USP7介导DNMT1稳定性受到乙酰化作用的调控,并为设计出靶向DNMT1–USP7互作表面的抑制剂提供了结构基础。


原文链接:Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation


相关阅读:

DNA甲基化检测之一:DNA甲基化介绍视频

老年痴呆症新解释:DNA甲基化

交通警察中PM2.5急性暴露与慢性暴露对p16、iNOS和 RASSF1A基因启动子区DNA甲基化的影响(中山大学)

Cell子刊:DNA甲基化会诱发代谢类疾病

热门排行

推荐阅读